Single-use healing abutments were re-used in multiple patients after being sterilized in 184 patients at the University of Nevada – Las Vegas’s Faculty Dental Practice Clinic leading to the resignation of the director of the faculty group practice. “It’s not cost prohibitive, but it adds to the cost,” director Devore said. “Why buy something new if the thing you already have works just as well?” In addition to phoning patients, the university followed up
Implant Surface
Electrochemical HA Coating Process Yields Stronger Bond to Implants
Tel Aviv University researcher Prof. Noam Eliaz of the TAU School of Mechanical Engineering has developed an electrochemical process for coating metal implants which vastly improves their functionality, longevity and integration into the body. “The surface chemistry, structure and morphology of our new coatings resemble biological material,” explains Prof. Eliaz. “We`ve been able to enhance the integration of the coating with the mineralized tissue of the body, allowing more peoples` bodies to accept implants.” His new coating resulted in a
Intelligent Metal Surfaces direct Osteoblast Cell Activity and Fate
Université de Montréal Researchers have modified metal surfaces such as titanium producing a sponge-like pattern of nano pits that increased growth of bone cells, decreased growth of unwanted cells and stimulated stem cells, relative to untreated smooth ones. In addition, expression of genes required for cell adhesion and growth were increased in contact with the nanoporous surfaces. “We demonstrated that some cells stick better to these surfaces than they do to the traditional smooth ones,” says Dr. Nanci. “This is
Nanotubes and Stem Cells Accelerate Bone Growth
UC San Diego bioengineers and material science experts used a nano-bio technology method of placing mesenchymal stem cells on top of very thin titanium oxide nanotubes in order to control the conversion paths, called differentiation, into osteoblasts or bone building cells. Mesenchymal stem cells, which are different from embryonic stem cells, can be extracted and directly supplied from a patient’s own bone marrow. The researchers described their lab findings in a paper published this week in the Proceedings of the
Titanium Foam – New Implant Surface
Canadian researchers at the NRC Industrial Materials Institute (NRC-IMI) in Boucherville, Quebec have developed a porous titanium foam implant said to mimic a metallic version of bone. The titanium foam is made by mixing titanium powder with a polymer, and then adding foaming agents that expand the polymer when heated. Later, through a high-temperature heat treatment, the polymer is removed and the titanium particles are consolidated to provide mechanical strength to the porous structure. Porous titanium had previously been used
Straumann to test Mussel-Based Implant Adhesive Coating
Over the course of evolution mussels have developed a special glue that not only works under water, but is also a particularly firm and lasting bonding agent. The strength of the bond is due to a particular protein. Dr. Klaus Rischka, a chemist at the Fraunhofer Institute for Manufacturing Engineering and Applied Materials Research IFAM in Bremen and his partners at Frankfurt University Hospital, the Center of Biotechnical Engineering BitZ at Darmstadt University of Technology, the State Materials Testing Institute
Friadent Plus – Next Generation Surface from Dentsply Friadent
Dentsply Friadent had released their next generation implant surface which features a thermal etching process called BioPoreStructuring. They claim the specific etching acid they use creates an ideal physical, chemical and biological surface needed to attract osteoblasts to the implant surface.
NanoTite – HA splutter coated titanium surface
Bicon have developed a new surface process, NanoTite™. A high-energy ion beam source aims a beam of ions at the surface of a target treated with HA. These high-energy ions eject the HA from the target/substrate and create a molecular cloud whose molecules bond with the surface of the Bicon Ti 6Al-4V ELI implant. This Ion-Beam Assisted Deposition process, which provides increased integration with the implant surface, is known as High-Energy Sputter Deposition. Using an Ion-Beam Assisted Deposition process, the
rhBMP-2 Bone Regeneration Around Implants
Ulf Wikesjö of the Medical College of Georgia has demonstrated impressive osseous regeneration around dental implants coated with recombinant human Bone Morphogenic Protein (rhBMP-2). Dr. Wikesjö is researching wound-healing and tissue regeneration with a $1.4 million grant from Nobel Biocare. In laboratory tests, rhBMP-2 applied onto implants directs endogenous stem cells to become bone-forming cells. The result was a nearly complete regeneration of lost tissue. He hopes to start clinical trials in the summer of 2006.
Anti-Microbial Implant NanoSurface
Brown University engineers have shown that both zinc and titanium oxide nanosurfaces can reduce the presence of bacteria. Discs with nanostructured surfaces had bumps that measured only .023 microns in diameter. Discs with microstructured surfaces had bumps that measured about 5 microns in diameter. Microstructured zinc oxide discs were host to 1,000 times more bacteria than the nanostructured zinc oxide discs. Similar, but less striking, results were duplicated on titanium oxide discs. The engineer`s hypothesis is that: `with the nanostructured